N-DWNTs/石墨烯纳米复合材料,用于高性能柔性超级电容器
发布时间:2025-06-26 17:56 浏览量:1
1成果简介
石墨烯-碳纳米管复合材料常因合成复杂、产率低及界面接触不良等问题,导致其电化学性能受限。同样,聚合物基固态电解质也存在离子电导率低和机械强度不足的缺陷。为解决这些问题,本文,韩国浦项科技大学Sandya Rani Mangishetti、Won Bae Kim等研究人员在《Carbon》期刊发表名为“N-doped carbon nanotube-graphene nanoarchitecture electrodes with solid-state biopolymer electrolyte for high performance flexible supercapacitors”的论文,研究开发了一种成本低廉、可规模化的单步化学气相沉积(CVD)工艺,将一维双壁碳纳米管(DWNTs)与二维氮掺杂石墨烯纳米片连接,实现了95.4%的高产率。
所得的N-DWNTs/石墨烯混合电极展现出高导电性,并在2 A/g时具有697.8 F/g的比电容,在50 A/g时为589 F/g。此外,设计了一种固体电解质,采用95%的[BMIM][TFSI]离子液体与甲基纤维素-淀粉生物聚合物混合物,具有高离子导电性、机械稳定性以及宽广的操作电压和温度范围。组装的柔性不对称超级电容器,采用N-DWNTs/石墨烯作为负极,N-DWNTs/石墨烯/Fe₃O₄@PANi作为正极,实现了187.8 Wh/kg的能量密度、3.8 kW/kg的功率密度,以及优异的循环稳定性(15,000次循环后容量保持率达97.4%)。其在1000次弯曲循环后仍保持97.5%的电容,并在0 °C至90 °C的温度范围内有效运行。这些结果表明,该技术在下一代柔性储能设备中具有显著潜力。
2图文导读
图1. (a) XRD patterns, (b) Raman spectra (c) N2 adsorption-desorption isotherms, (d) TGA curves of unpurified N-DWNTs/graphene, and N-DWNTs/graphene.
图2. (a) HRTEM images of the N-DWNTs/graphene (inset shows the high-resolution image of individual N-DWNTs, (b) FESEM images of N– N-DWNTs/graphene/Fe3O4@PANi-20, (c) HRTEM images of N– N-DWNTs/graphene/Fe3O4@PANi-20.
图3. XPS spectra of the produced materials. (a) Survey spectrum of the produced materials; XPS high resolution spectra of N-DWNTs/graphene (b) C1s, (c) O1s, (d) N1s regions; XPS high resolution spectra of N-DWNTs/graphene/Fe3O4@PANi-20 (e) C1s, (f) O1s, (g) N1s (h) Fe 2p regions。
图4. (a) Conductivity vs. temperature plot for IONL, IONPEL electrolytes as a function of polymer blend and IONL proportions, (b) Storage and loss modulus for the IONL and IONPEL electrolytes at 25 °C, (c) TGA thermograms for IONL, IONPEL (d) DSC thermograms; (e): (i) Flexible IONPEL, (ii) Twisted stretched IONPEL, (v) Stretched IONPEL.
图5. CV curves at various scan rates, GCD curves at different current densities, and Nyquist plots fitted with Randles equivalent circuits for the electrode materials (a–c) N-DWNTs/graphene; (d–f) N-DWNTs/graphene/Fe3O4@PANi-20 in half-cell configuration using a 1 M Na2SO4 electrolyte.
图6. CV curves for the ASSC in (a) IONL, (b) IONPEL; GCD curves for the ASSC in (c) IONL, (d) IONPEL; Nyquist plots for the ASSC in (e) IONL, (f) IONPEL; (g) CV and (h) GCD curves for flexible ASSC device at various operating temperatures, (i) Cycling stability of ASSC.
图7. (a) Columbic efficiencies of the ASSC, (b) Rate capability plot for the half-cell and full-cell assemblies, (c) Ragone plot, (d) GCD curves (2 A/g) at different bending angles for ASSC in IONPEL, Photographic images of (e) flexible supercapacitor assembly, (f) LED powered by the IONGL2 based ASSC at different periods (after 10, 15, and 20 min).
3小结
综上所述,氮掺杂双壁碳纳米管/石墨烯(N-DWNTs/石墨烯)电极与可生物降解固态电解质(IONPEL)展现出优异的电化学性能、机械稳定性和柔韧性,使其成为下一代柔性储能技术的理想选择。N-DWNTs/石墨烯通过单步化学气相沉积(CVD)合成,产率达95.4%,具有高导电性(389 S/cm)、适中的比表面积(568 m²/g)及分级多孔结构,可实现高效离子扩散与电子传输。其集成形态可防止双壁碳纳米管束簇及石墨烯重新堆叠,从而提升结构完整性和倍率性能。电极在2 A/g电流密度下展现出697.8 F/g(N-DWNTs/石墨烯)和1829.1 F/g(N-DWNTs/石墨烯/Fe₃O₄@PANi)的比电容,对应的倍率性能分别为84.4%和85.3%。PANi形成导电网络,固定Fe₃O₄并抑制循环过程中的体积变化。这种混合结构确保了快速电荷转移(低Rct)和高效离子扩散(低Rs、Wimp),从而实现高能量存储和循环稳定性。IONPEL作为隔膜和电解质的双重角色,具有高离子电导率(3.6 mS/cm)、机械强度(10 MPa)和热稳定性,使柔性ASSCs能够在宽温度范围(0–90 °C)和电压窗口(0–3.8 V)内工作。组装后的ASSCs实现能量密度和功率密度分别为187.8 Wh/kg和3.8 kW/kg,经过1000次弯曲循环后电容保持率达97.5%。长期循环稳定性测试显示,IONL和IONPEL在15,000次循环后分别保持96.2%和97.4%的性能。这些ASSC优异的柔韧性和耐用性使其成为可穿戴生物电子设备的理想选择,包括用于监测生理信号的传感器。本研究为开发柔性、高性能储能系统奠定了基础。
文献:
来源:材料分析与应用